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PREDICTION OF GROUND VIBRATION FROM TRAINS
USING SEISMIC REFLECTIVITY METHODS FOR

A POROUS SOIL

J. T. NELSON

=ilson, Ihrig & Associates, Inc., 5776 Broadway, Oakland, CA 94618, ;.S.A.

(Received in ,nal form 23 September 1999)

Biot's model of wave propagation in porous isotropic materials is explored for
predicting ground vibration from rail vehicles on vertically heterogeneous isotropic
saturated soil and rock using seismic re#ectivity methods combined with
a multi-degree-of-freedom model of a transit vehicle bogie. A sketch of the
mathematical theory, canonical results for step loads on a porous half-space,
spectral responses for simple layer pro"les, and an example of a prediction for rail
transit vehicles are presented. The model indicates that saturation of the soil
introduces excess attenuation in the vibration response of the soil, and that both
pitch and roll moments in addition to vertical forces caused by the vehicle bogie
may be signi"cant sources of vibration.

( 2000 Academic Press
1. INTRODUCTION

This paper explores the application of Biot's theory [1, 2] to the prediction of
ground vibration produced by rail transportation vehicles operating on layered
porous soils. While simple analytical theories exist for predicting ground vibration
from transit vehicles, the complex mathematical problem of vehicles operating on
vertically heterogeneous layered soils is normally ignored, with some exceptions
[3]. Early attempts at including porosity and #uid in models of vertically
heterogeneous soils have primarily been in the area of seismic forward modelling.
One of the "rst attempts at modelling wave propagation in vertically
heterogeneous porous materials with smoothly varying porosity and moduli
involved predicting solid and #uid responses to hydraulic fractures [4]. The
formalism developed for hydraulic fracture modelling is applied here to model the
response of layered soils to vertical loads and moments that might be caused
by a transit vehicle. These forces and moments can be calculated by
a multi-degree-of-freedom model of the vehicle bogie and track, using rail and
wheel roughness pro"les. The model can predict the e!ect of layering, porosity,
depth to water table, and other characteristic parameters of soils.
0022-460X/00/130727#11 $35.00/0 ( 2000 Academic Press
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2. MATHEMATICAL MODEL

The soil is modelled as a layered porous isotropic material supported on
a homogeneous porous half-space. The atmosphere is assumed to cover the top of
the layered soil structure. The equations of motion are well described in Biot's
original papers concerning wave propagation in porous solids, and the formalism
adopted by Biot in 1956 is used, where the porous matrix and #uid displacement
are represented symmetrically.

Tortuosity and sinuosity parameters are incorporated in the density parameters,
o
ij
, introduced by Biot. The #uid viscosity is incorporated into the friction

parameter, b, which accounts for dissipation due to relative #ow between the #uid
and porous matrix. The friction formulae introduced by Biot for slit pores are used
here. At low frequencies, the friction is governed by Poiseuille #ow, and at high
frequencies, the friction is modi"ed due to higher viscous shear stresses in the #uid.
The transition between low and high frequencies is approximately 100 Hz for
a pore size of 0)1 mm. For circular pores, the friction coe$cient is similar to that
given above if the pore size is changed by about 30%. Given the complex nature of
pore geometries, the representation for slit-like pores is used here regardless of
actual pore geometries that might be encountered.

The moduli of the saturated porous material, A, N, Q, and R, introduced by Biot,
are assumed be functions of vertical position. Relations between these parameters
were discussed by the author [4] and by Biot and Willis [5]. The problem
concerning the stress}strain response is reduced to providing the shear and bulk
moduli for the porous structure and a bulk modulus for the #uid, together with
a porosity. In the present case, the elastic moduli for the porous structure in
a &&drained'' condition, the bulk modulus for the #uid, and the porosity are speci"ed,
and the remaining parameters, A, Q, R, and density parameters are inferred.
The speci"ed parameters might be realized from actual laboratory or "eld tests of
soils.

The solutions to the equation of motion for the matrix displacement and partial
tractions acting at horizontal planes are represented in cylindrical co-ordinates, r, h,
and z, as
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These expressions are identical in form with those employed by Aki and Richards
for vertically heterogeneous elastic regions [6]. The variables k, and m, are the
radial wavenumber and azimuthal mode number, respectively. The coe$cients
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are displacement-stress vector components which separate
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into shear-horizontal (SH) and dilatational radial and vertical (PSV) solutions. The
components l

1
and l

2
are the SH components, and r

1
, r

2
, r

3
and r

4
are the PSV

components. Similar representations are used for the vertical components of #uid
displacement and partial traction. Fluid shear is not included in the model, because
the radial and transverse components of #uid displacement are not included in
boundary conditions between layers, and the #uid partial traction acting on an
element of area in the horizontal plane is necessarily oriented normal to the plane.
Thus, only the vertical components of #uid displacement and traction are needed.
The #uid displacement in the vertical direction is represented as
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and the #uid partial traction (normal to the horizontal plane) is

SK zL (r, h, z, u)"
1
4n

m/`=
+

m/~=
P

=

0

sm
2
(k, z, u)Rm

k
(r, h)k dk.

The displacement}stress components s
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and s
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are coupled with the PSV
displacement}stress components, r
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, for the porous structure, and are

thus part of the PSV solution. The cylindrical vector harmonics employed above
are
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is associated with the shear horizontal motion (SH), and Sm
k

and Rm
k

are
associated with the PSV response.

The time-transformed loads are similarly expanded in cylinder harmonics. For
body forces applied to the porous matrix:
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The #uid loads are expressed as
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Solutions for the displacement}stress components within each heterogeneous
layer are obtained for each frequency and radial wavenumber, k, by solving a set of
ordinary di!erential equations in z [4]. These are used to construct propagators
that represent fundamental solutions for each layer.
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For the homogeneous porous half-space below the layered region, the solution is
expressed with two scalar and two vector potentials, the solutions of which are used
to provide boundary conditions at the bottom of the layered region. An additional
scalar function is needed beyond the usual scalar potential for an elastic or
viscoelastic region to represent the #uid displacement "eld. The vector potentials
for rotational displacements of the #uid are proportional to the vector potentials
for the structural displacements, and are thus redundant. The boundary conditions
at the supporting half-space are satis"ed by setting the coe$cients of the upward
propagating waves to zero, as there are no sources at positive in"nity.

A #uid layer is included above the porous region as a matter of completeness.
While it is not necessary, it admits the possibility of modelling acoustic sources. The
upper layer is assumed to be air in the present work, for which a scalar potential
representation is employed.

The boundary conditions at any horizontal plane or interface between layers
include: continuity of normal, radial, and transverse displacements of the porous
structure, continuity of the tangential partial tractions of the porous matrix,
continuity of the sum of the normal partial tractions of the porous structure and
#uid, continuity of #uid #ux (#uid injection), and continuity of pore pressure. These
conditions give eight boundary conditions at each horizontal surface. The solutions
for the heterogeneous layers and the homogeneous half-spaces are substituted into
a matrix equation representing the boundary conditions at each interface, and
decomposed with a block-tridiagonal solver and LU decomposition. Solutions for
various forces and displacement-gradients are obtained by back-substitution. The
"nal solutions are obtained by numerical inversion of the Hankel transforms
embodied in the above integral equations, using a Romberg integration scheme.

3. NUMERICAL SOLUTION

Figure 1 is a plot of the calculated vertical response of the surface of a half-space
with uniform porous structure. Two cases are represented: one with air at standard
pressure contained in the pores and the second with water. The porosity is assumed
to be 50%, and pore size is assumed to be 0)2 mm. The shear and bulk sti!nesses for
the drained condition were adjusted to provide an equivalent Poisson ratio for the
drained matrix of 0)25. The distance from the source is 30 m.

The response for the dry condition is virtually identical with Pekeris' solution for
the response of a uniform half-space to a vertical step load [7]. At the arrival time of
the Rayleigh wave at about 0)23 s, there appears to be a slight over-shoot, which
may be a result of the numerical inversion scheme, or might be due to a physical
e!ect involving the structure and air cover. The P-wave arrival occurs at about
0)13 s, followed by a shear wave at about 0)2 s. With water introduced into the
porous matrix, the P-wave arrival occurs much earlier, at about 0)03 s, though the
maximum occurs at about 0)12 s. The shear wave is delayed until about 0)22 s, due
to the added density. The Rayleigh arrival is heavily damped and much less well
de"ned than for the case of air saturation alone. A permanent static displacement
occurs because the step load remains applied for all time after 0 s. The two solutions



Figure 1. Vertical responses of uniform saturated and unsaturated porous half-spaces at 31 m from
a 1 N vertical step point load applied at 0 s (Porosity"0)5, Pore size"0)2 mm): [* air saturated;
- - - - - water saturated.]
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are expected to agree asymptotically at large time, because the #uid is free to di!use
to the surface, and the reason for the lack of agreement has not been investigated.
However, the discrepancy may be due simply to the method of calculating the static
displacement over a "nite time window, or it may be due to the manner of
specifying the load. Further investigation is needed.

Figure 2 illustrates the evolution of the temporal response with distance from the
source for the #uid saturated case. At 5 m, the response is quite strong, with
a well-de"ned Rayleigh arrival. At larger distances, attenuation reduces both the
amplitude and sharpness of the Rayleigh arrival. For the elastic case (not shown in
Figure 2), there is no change of shape of the waveform, due to lack of a de"ning
physical length. For the damped case, the pore size and attenuation rates provide
a de"nition of length, so that the waveform changes shape with distance from the
source.

Figure 3 illustrates the corresponding Fourier spectrum for the response to an
impulse load. In this example, the high-frequency attenuation is very strong with
increasing distance. At 80 Hz, the attenuation is 48 db at 30 m from the source
relative to the response at 5 m. Numerical noise is evident in the solution for 31 m
at about 120 Hz. Close to the source, the spectrum is #at.

The step responses for a uniform 6 m thick water saturated layer over a sti!
half-space (rock) with small pore size is compared with the response to a saturated
uniform half-space in Figure 4. The initial portions of each of the responses are



Figure 2. Vertical response of a uniform saturated porous half-space for a 1 N vertical step point
load applied at 0 s (Porosity"0)5, Pore size"0)2 mm):** 5 m; } } } 10 m; - - - 15 m; - - - - 21 m; ) ) )
31 m.
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indistinguishable up to about 0)05 s, after which a re#ection from the sti! layer
tends to decrease the response relative to that of the uniform half-space. This would
be the nature of a re#ected P-wave from a layer of higher impedance. The
shear-wave and Rayleigh wave arrivals occur at about the same time, 0)08 and
0)09 s. However, after 0)1 s, the response is greatly modi"ed by the sti! layer,
becoming a heavily damped sinusoid. Here, the layer produces a mode of vibration
with a period of about 0)09 s.

Also shown in Figure 4 is the response of a 6 m thick heterogeneous layer with
linearly increasing shear sti!ness and bulk modulus with depth over the same sti!
half-space. The porosity and pore size are assumed to be decreasing with increasing
depth, as might be the case for a real soil. The response is very di!erent from either
of the other responses. Suprisingly, the calculated static de#ection of the
heterogeneous layer at the end of the 1 s time window is greater than that of the
uniform layer.

Figures 5 illustrates the spectral responses at various distances for the #uid
saturated heterogeneous layer introduced in Figure 4. The spectra are of the
displacement Green's function, or responses to a delta function load, rather than
the Heaviside step load. The spectrum nearest the source exhibits a #at
characteristic, while at greater distances the spectra contain sharp dips or nodes.
The maximum responses in the spectra occur at about 20}35 Hz at ranges of
15}31 m.



Figure 3. Vertical displacement response spectra (Green's function) for a saturated porous half-
space excited by a 1 N s impulse (Porosity"0)5, Pore size"0)2mm):** 5 m;** 10 m; } } }15 m;
- - - - 21 m; ) ) ) 31 m.

Figure 4. Vertical displacement responses of heterogeneous water saturated half-spaces at 10 m
from a 1 N step load; ** Homogeneous half-space; ) ) ) )homogeneous layer over sti! half-space at
6 m depth; - - - - heterogeneous layer over sti!-half-space.
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Figure 5. Vertical displacement response spectra (Green's function) of a 6 m thick heterogeneous
saturated layer over a sti! rock-like half-space excited by a 1 N s impulse: ** 5 m; *** 10 m;
} } } } 15 m; - - - - 21 m; ) ) ) 31 m.
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4. PREDICTION OF TRAIN VIBRATION

The responses for the heterogeneous porous layer over a sti! layer are combined
with the calculated forces and moments applied to the ground surface by a two-car
articulated light-rail transit train and track with constant wheel and rail roughness
amplitudes as a function of frequency. A multi-degree-of-freedom model of the
motored and trailing trucks and of the track is used. The forces and moments are
combined with the time derivatives of the Green's functions and those of the spatial
gradients of the Green's functions for the heterogeneous layer discussed above,
respectively. The spatial gradients were obtained by substituting inhomogeneous
terms resulting from di!erentiating the Green's functions with respect to source
co-ordinate in lieu of the force terms. The results are plotted in Figure 6 for the
velocity response due to vertical forces caused by net vertical translation, moments
transverse to the track caused by pitch, and moments parallel with the track caused
by roll of the bogies. The energy sum of these contributions is also shown. Each
wheel is assumed to have a roughness amplitude of 1 km at all wavelengths, and the
responses are summed incoherently for each wheel. Thus, a total of 24 sources are
included. The curves are frequency response functions. Thus, if the sinusoidal
roughness at the 50 Hz 1

3
octave band is 1 km, the corresponding 1

3
octave band

vibration velocity at 50 Hz would be about 26 dB re 1 km/s, as given by the curve.



Figure 6. Vertical vibration velocity frequency response at 15 m from two articulated light-rail
transit vehicles travelling at 40 kph with wheel sinusoidal roughness pro"les of 1 km: ** energy
sum; } } } roll; - - - - pitch; ) ) ) vertical force.
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The spectra do not represent actual vibration velocity levels, because a realistic
roughness spectrum is not included.

At low frequencies, the vertical forces dominate the response spectrum. However,
at higher frequencies, the moments caused by pitch and roll become most
signi"cant. These results are surprising, because pitch and roll of the vehicle bogie
are usually assumed to be less signi"cant than the net vertical forces due to vertical
translation of the bogie. This assumption is implicit in the experimental methods
now employed for prediction of ground vibration at United States transit systems
[8, 9].

Before concluding that pitch and roll moments are of similar or greater
importance than vertical forces in calculating ground vibration, additional
theoretical and experimental investigation is needed. For example, the roughnesses
at each wheel are not incoherent. Each of 12 wheels on one side of the train rolls
over the same roughness pro"le as the others. Secondly, each of the wheel
roughnesses are periodic with wheel rotation, and corrugation at both rails may be
coherent. The parametric excitation by the periodically spaced concrete ties is
certainly correlated. Finally, the wavelength of Rayleigh waves in the soil are
approaching the bogie dimensions at high frequencies, so that the assumption of
a point moment acting on the surface is not realized, contrary to the assumption
used here.
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5. CONCLUSION

The model predictions should be compared with ground impulse responses at
locations where responses have been measured and where soils reports are
available. Rail and wheel roughness data at wavelengths important at ground
vibration frequencies are needed, perhaps involving an extrapolation of
Remington's estimates of roughness as a function of wavenumber [10].
Measurements of contact dynamic forces are needed to quantify vertical forces and
pitch and roll moments of a bogie. The dissipation formula for the porous layer
model should be developed further to include dissipation for partially saturated
conditions. There exist energy dissipation formulae based on partial saturation
which might be applicable [11]. A constant-Q loss factor for the porous matrix can
be easily incorporated in the present model [4]. There are a number of factors that
may frustrate application of the above methods to ground vibration prediction.
These include lateral heterogeneity of the soil, folding, anisotropic material
properties, etc.
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